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Correlation functions, free energies, and magnetizations
in the two-dimensional random-field Ising model
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Transfer-matrix methods are used to calculate spin-spin correlation functions (G), Helmholtz free energies
~f! and magnetizations~m! in the two-dimensional random-field Ising model close to the zero-field bulk critical
temperatureTc 0, on long strips of widthL53218 sites, for binary field distributions. Analysis of the
probability distributions ofG for varying spin-spin distancesR shows that describing the decay of their
averaged values by effective correlation lengths is a valid procedure only for not very largeR. Connections
between field and correlation function distributions at high temperatures are established, yielding approximate
analytical expressions for the latter, which are used for computation of the corresponding structure factor. It is
shown that, for fixedR/L, the fractional widths of correlation-function distributions saturate asymptotically
with L22.2. Considering an added uniform applied fieldh, a connection betweenf (h), m(h), the Gibbs free
energyg(m) and the distribution function for the uniform magnetization in a zero uniform field,P0(m), is
derived and first illustrated for pure systems, and then applied for nonzero random field. From finite-size
scaling and crossover arguments, coupled with numerical data, it is found that the width ofP0(m) varies
against~nonvanishing, but small! random-field intensityH0 asH0
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I. INTRODUCTION

The random-field Ising model~RFIM! has posed a num
ber of challenges to researchers since its introduction a
apparently purely theoretical puzzle@1#. The later realization
that it corresponds, give or take a few~hopefully irrelevant!
details, to the experimentally realizable dilute Ising antif
romagnet in a uniform applied field@2# brought about new
insights and new questions as well; among the latter, is
interpretation of experimental data in a suitable theoret
framework. This has proved to be rather an intricate subj
even down to basic aspects such as whether the lower cr
dimensionality for the problem wasd52 or 3 @3–5#. Though
by now this particular issue was settled in favor ofd52 @6#,
several important aspects~such as the scaling behavior ne
the destroyed phase transition ind52, which will be of in-
terest here! still require further elucidation@7#.

In the present paper we deal with a two-dimensio
RFIM, where long-range order is destroyed, and a ze
temperature, zero-field ‘‘anomalous’’ critical point appea
@8#. The latter will not concern us directly, as we shall
working at high temperatures, close to the pure-system
roparamagnetic transition. We extend and complement
early work@9#, making use of transfer-matrix~TM! methods
on long, finite-width strips of a square lattice; we gener
and analyze statistics of spin-spin correlation functions
uniform magnetizations. Wherever feasible, we attempt
draw connections between our numerical results and exp
mentally observable quantities. In what follows, we begin
briefly reviewing selected aspects of the numerical te
niques used, and how they relate to the physical prob
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under study. We then recall the connection between struc
factors and averaged correlations in random systems,
discuss the extraction of effective correlation lengths fro
our numerical data for correlation-function statistics. Ne
we exploit the connection between field and correlation fu
tion distributions at high temperatures, in an attempt to
rive approximate analytical expressions for the latter; su
formulas are used in turn, in order to compute the cor
sponding structure factor. A short section is dedicated t
reanalysis of the asymptotic behavior of the widths of cor
lation function distributions, first presented in Ref.@9#, and
now complemented by additional data. In Sec. VI, an ad
tional uniform applied field is considered: free energies a
uniform magnetizations are calculated on strips of both p
and RFIM systems. These quantities are used to calculate
corresponding Gibbs free energy which, in turn, gives
distribution function for the uniform magnetization in ze
uniform field. Numerical data are then analyzed via fini
size scaling and crossover arguments. A final section sum
rizes our work.

II. NUMERICAL METHODS AND dÄ2 RFIM

We consider strips of a square lattice of ferromagne
Ising spins with nearest-neighbor interactionJ51, of width
3<L<18 sites with periodic boundary conditions acros
The random-field valueshi are drawn for each sitei from the
binary distribution:

p~hi !5 1
2 @d~hi2H0!1d~hi1H0!#. ~1!

TM methods are used, on long strips of typical lengthLx
5106 columns, as described at length in Ref.@9# and refer-
ences therein, to generate representative samples of
quenched random fields. Along the strip, we calculate co
©2001 The American Physical Society17-1
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lation functions~as explained in the next paragraph!, as well
as free energies and magnetizations~details in Sec. VI!.

Here we calculate the disconnected spin-spin correla
function G(R)[^s0

1sR
1&, between spins on the same ro

~say, row 1!, andR columns apart. Related quantities, such
correlation lengths, are defined with connected correlatio
^s0sR&2^s&2, in mind; however, for the quasi-one
dimensional Ising systems under consideration~either pure
or random! one is always in the paramagnetic phase, so
distinction between connected and disconnected correlat
is unimportant. In Ref.@9# we explained why the ranges o
spin-spin distance, temperature, and random-field inten
of most interest for investigation by TM methods are, resp
tively, R/L.1, 0,T&Tc 052.269 . . . @we take kB[1],
H0&0.5. Here we restrict ourselves to high temperatureT
*2.0 and rather low fieldsH0&0.120.15. We use a linea
binning for the histograms of occurrence ofG(R); usually
the whole@21,1# interval of variation ofG(R) is divided
into 103 bins.

Since we shall be dealing with probability distributions
word is in order about multifractality. Though multifracta
behavior has been foundat the critical point of random-bond
Potts systems@10,11#, the available evidence strongly su
gests that, off bulk criticality, correlation functions beha
normally @10#. Thus in the present case we expect that ana
ses of different moments of the probability distribution ofG
will yield essentially the same results.

III. CORRELATION DECAY

The properties of correlation functions are usually inc
porated into associated correlation lengths, whose basic
nition is as ~minus! the inverse slope of semilogarithm
plots of correlation functions against distance. In this vie
one assumes both that exponential decay can be well de
at essentially all distances, and that a single length is eno
to characterize such behavior. In cases such as the pre
quenched randomness implies that configurational aver
must be taken, and one must be careful in deciding w
quantities are to be thus promediated. Recall that, e.g
neutron scattering experiments, the intensity of the magn
critical scattering is proportional to the average~over the
crystal! of the scattering functionS(qW ), which is the Fourier
transform of the correlation function for wave-vector trans
qW @12,13#. With GR[G(R), and wave vectorq in the row
directionS becomes

@S~q!#5F E dR eiqRGRG5E dR eiqR ^GR&, ~2!

where@•••# stands for configurational average, and

^GR&5E dGR P~GR!GR , ~3!

whereP(GR) is the probability distribution forGR . The last
equality in Eq ~2! depends only on the assumption th
P(GR) is position independent along the crystal.
03611
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The simplest assumption forP(GR) that incorporates
both disorder and exponential decay given by a single len
j for all distances is a Gaussian distribution

P~GR!5
1

A2p D~R!
e2y2/2D2(R), y[GR2e2R/j, ~4!

where distance-dependent widthsD(R) allow for, e.g.
~disorder-induced!, larger uncertainties for larger spin-sp
separations. However, using Eq.~4! in Eqs.~2! and ~3!, one
obtains a width-independent Lorentzian form for the avera
structure factor:

@S~q!#5
1

q21
1

j2

. ~5!

This coincides with the standard mean-field result for
disordered phase, and is deemed unsatisfactory upon c
parison with experimental data@7,13#.

We now exhibit our numerical results, and compare th
implications to those of Eqs.~4! and ~5!. For high tempera-
tures and low random-field intensities, as specified above
recall ~also see Ref.@9#! the following main features found
for the probability distributionP(G): ~i! a clearly identifi-
able, cusplike peak, at someGm below the zero-field value
G0[G(H050); ~ii ! a short tail below the peak and a lon
one above it, such that~iii ! all moments of order>0 of the
distribution areabove G0. In Fig. 1, where the first momen
^G& is shown, one hasGm50.278, G050.2853, ^G&
50.321; the rms widthW̃[^(G2^G&)2&1/250.071.

Therefore, the features depicted in Fig. 1, especially
asymmetric cusp, are at variance with the form of Eq.~4!.
We now investigate what effects are carried over to the
sociated correlation lengths. We do so by mimicking the p
cedure outlined in Eqs.~2! and ~3! above: first we average
over randomness for a given spin-spin separation, and
study the variation of the averaged quantities over distan

FIG. 1. Normalized histogramP(G) of the occurrence ofG.
Strip lengthLx5106 columns, binwidth 231023. Vertical bars are
located atG0 ~full line! and^G& ~dashed!, respectively. The shade

region on the horizontal axis goes from̂G&2W̃ to ^G&1W̃.
7-2
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CORRELATION FUNCTIONS, FREE ENERGIES, AND . . . PHYSICAL REVIEW E64 036117
The results are in Fig. 2, where our numerical data for^G&
are plotted against varyingR. H050 data are also shown fo
comparison.

One sees from the respective slopes that, taking into
count data forR*L, the correlation length forH0Þ0 would
seem to be systematicallylarger than in zero field. This re-
flects the domain structure into which the system bre
down: at short distances the conditional probability for a s
to belong to the same domain as the one at the origin
larger than forH050.

For longer distances, correlation functions start to sh
severe disorder-induced fluctuations, related to the cros
of domain walls. Contrary to the zero-field case, whe
temperature-induced domain walls are present but the
spective sign changes in correlation functions average ou
give an exponential fall off, here the domain wall configur
tions are essentially determined by the~quenched! accumu-
lated random-field fluctuations. At largeR, such fluctuations
play a very sensitive role even for very low random fie
intensities. One anticipates problems with defining corre
tion lengths from the corresponding data. The vertical bar
Fig. 2 show that, for a fixed strip widthL, the widthW̃ of the
distribution indeed grows apparently unbounded for incre
ing R; though this is related to the crossing of domain wa
just mentioned, it is also, and predominantly, an intrin
feature of the quasi-one-dimensional systems used h
Thus inferring a two-dimensional behavior from such tren
may be risky. However, we now argue that ind52 one does
actually run into problems for largeR, exactly as inferred
above; only, the underlying reasoning is subtler.

In fact ~see Ref.@9# and Sec. V below!, a different analy-
sis of correlation functions, at fixedR/L, strongly suggests
that therelative widths W[W̃/^G& grow asR,L→` in d
52, approaching a finite limiting valueC H0

k , C.2,
k.0.5. This means that, when one considers the disper
of ln ^G&, the signal-to-noise ratio becomes of order 1
largeR,L, and it is this latter fact that, ind52, must com-
promise attempts to extract correlation lengths in such ran

FIG. 2. Correlation decay along strips of widthsL55 and 9.
Full lines: H050. Points: ^G& for H050.1. Dashed lines: un
weighted least-squares fits ofH050.1 data. Vertical bars give th

rms widthsW̃ of corresponding distributions.
03611
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The effect of the above on fits of neutron-scattering d
to line shapes is that, since the latter rely on the idea
correlation lengths are always reliable quantities, they m
be off the actual picture in the small-wavevector region. W
now attempt to derive approximate analytical expressions
P(GR); our ultimate goal is to predict a form for@S(q)#
from Eqs.~2! and ~3!.

IV. DISTRIBUTION OF G FROM FIELD DISTRIBUTION
„AT HIGH T…

In this section we use simple scaling ideas to establis
quantitative connection between the underlying distribut
of accumulated fields and that of the correlation functio
themselves. We begin by considering a one-dimensional
tem with sites denoted byi 50,1, . . . , uniform nearest-
neighbor interactionsK and site-dependent random fieldshi
~both in units ofT). For any given specific realisation of th
fields an exact decimation scheme with length scaling fac
b52 can be applied, eliminating all odd-numbered sites. T
renormalized fields at, and coupling between, e.g., spin
and 2, are given by

h082h285h02h2 ,

h081h285h01h21
1

2
lnFcosh 2~K1h1!

cosh 2~K2h1!G , ~6!

4K85 lnFcosh 2~K1h1!cosh 2~K2h1!

cosh22h1
G .

Iterating this proceduren times, one obtains a single reno
malized bondK̃ connecting sites 0 andR (R52n), at which
the respective rescaled fields areh̃0 , h̃R . The correlation
function G(R)[^s0sR& is therefore

G~R!5
e2K̃ cosh~ h̃01h̃R!2cosh~ h̃02h̃R!

e2K̃ cosh~ h̃01h̃R!1cosh~ h̃02h̃R!
. ~7!

For low fields H0!1, one uses cosh(h̃02h̃R)/cosh(h̃01h̃R)
.exp(22h̃0h̃R) to obtain

G~R!.tanh~K̃1h̃0h̃R!. ~8!

Then, also provided thatH0!K, the distribution ofG(R) is
given by that ofX[h̃0h̃R , since ~to lowest order inH0)
K85 1

2 ln cosh 2K is field independent. One has

P~X!5E dh̃0 P̃~ h̃0! E dh̃R P̃~ h̃R!d~X2h̃0h̃R!. ~9!

At low H0, the scaling equations~6! give h08;h0

1h1 tanh 2K. Repeated applications of this transformati
give h̃0;( i 51

R hi if R!j, wherej; ln(tanhK)21 is the cor-

relation length at lowH0. Thenh̃0 ~and similarlyh̃R) is the
7-3
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S. L. A. de QUEIROZ AND R. B. STINCHCOMBE PHYSICAL REVIEW E64 036117
sum of N independent variables (N5R), so the individual
distributions ofh̃0 , h̃R become~at largeR andj) Gaussians
of width D[H0AN:

P̃~ h̃0,R!}exp@2~ h̃0,R /D!2#. ~10!

For R*j, the same form applies, but because the field ac
mulation under scaling is cut off by the decreasing tanhK,
the relation for D involves N;j. So, in general,N
;min (R,j).

Making h̃05s cosu, h̃R5s sinu,

P~X!}E
0

`

ds sE
0

2p

du e2s2/D2
dS X2

s2

2
sin 2u D , ~11!

with the final result

P~X!5
a

D2 e2y lnS 11
1

yD , y[
2uXu
D2 , ~12!

wherea is an overall normalization constant. Strictly spea
ing, Eq.~12! is anasymptoticreduction of Eq.~11!, valid for
the regimesy!1 ~the relevant one for our purposes,
shown below! andy@1.

Transforming back toP(G), one sees that the valueGm
for which P(G) is maximum must correspond toX50,
which maximizesP(X). Thus, from Eq.~8!,

y5
2

D2 utanh21 Gm2tanh21 Gu. ~13!

For G close toGm , linearization gives

P~G!;

expF2
1

D̃2
uGm2Gu G

2D2@12G2#
lnF11

D̃2

uGm2GuG , ~14!

with D̃25 1
2 D2(12Gm

2 ).
The main feature exhibited by this form is a locally sym

metric cusp, with infinite slope on either side, atG5Gm .
This is expected to carry over to more general contexts, p
vided thatH0!1. Indeed we have checked that a simi
description~applying approximate Migdal-Kadanoff scalin
calculations!, with the prediction of a cusp, also applies o
strips and in two dimensions@see Eqs.~15! and ~16! below,
and related discussion#. A quantitative test of Eq.~14! is
shown in Fig. 3, where only data forG<Gm are displayed
~we shall deal withG.Gm immediately afterward!. The
conditions are such thatR&j, Gm

2 !1 ~see Fig. 2!, so the

above low-field theory givesD̃;H0AR. One sees that expo
nential decay againstuG2Gmu/RH0

2 is indeed the dominan
behavior, provided thatH0&0.15; already forH050.25,
small departures show, which become more prominent
H050.5.

As regards cusp asymmetry, not predicted by Eq.~14!, we
have found that although data forG.Gm still fall exponen-
tially for small H0, they do not collapse when plotted again
03611
u-

-

o-
r

r

t

uG2Gmu/RH0
2. This is because the mutual reinforceme

between ferromagnetic spin-spin interactions and accu
lated field fluctuations~responsible for the long forward ta
@9#!, is left out by the approximation above Eq.~9!, namely,
that K8 is H0 independent.

Before calculating@S(q)# from Eq. ~14!, we recall that
Eqs.~2! and~3! are normally required for bulk systems, thu
one must work out an approximate scheme to go from
d51 regime of Eqs.~6!–~14! to d52. We have done so via
a Midgal-Kadanoff rescaling transformation atT;Tc 0. As a
consequence of the similarity of the corresponding recurs
relations, to those for one dimension, one ends up, aftem
scalings such that 2m5R, with a result very similar to Eq.
~8!,

G~R!5tanh~K̃1h̃0h̃R!, ~15!

where again one assumes low fields,h̃0 , h̃R. For largeR
these have Gaussian distributions of widthDR determined by
the eigenvaluel of the low-field scaling transformation o
H0. For T near Tc 0 , DR}Rm H0 where m5 ln l/ln b (b
52). Further,

K̃;Kc2
R

j
. ~16!

Since Eqs.~9!–~12! still apply, providedD is replaced by
DR , one obtains the dominant contribution to the scatter
function as:

@S~q!#}ReE dR eiqRe2R/j~11C DR
2 !, ~17!

whereC is a constant of order unity. This can be transform
into

@S~q!#}
1/j

1

j

2

1q2

1CH0
2~2m!! ReS 1

j
2 iq D 2(2m11)

.

~18!

FIG. 3. Semilogarithmic plots of distribution functions belo
Gm , the value at whichP(G) peaks~see text!. L55 andT52.0.
The straight line is a guide to the eye.
7-4
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CORRELATION FUNCTIONS, FREE ENERGIES, AND . . . PHYSICAL REVIEW E64 036117
If one assumes the formD5H0AR, given for R<j in one
dimension@see above and below Eq.~10!#, and also by the
Migdal-Kadanoff scheme ind52, thenm51/2, and Eq.~18!
predicts the line shape to be Lorentzian plus Lorentzi
squared, the mean-field form found when the disconnec
contribution is taken into account@4,7,12–14#. On the other
hand, if ones goes by the saturation behavior predicted
Ref. @9# and in Sec. V below, and by the scaling approac
if R*j, then the result isz50, corresponding to a singl
Lorentzian in Eq.~18!.

Though either of these final predictions is certainly op
to challenge, in view of the number and severity of appro
mations involved in the course of their derivation, it is e
pected that the procedure described above will serve
rough guide to attempts at connecting basic microscopic
tures~such as fluctuations of accumulated fields! to observ-
able quantities, e.g., scattering functions.

V. WIDTHS OF G DISTRIBUTION

In Ref. @9# we studied the variation of the rms relativ
width W of the probability distribution of correlation func
tions, against the field intensity and strip width, for fixe
R/L, high temperatures and smallH0. We proposed the scal
ing form

W5H0
k f ~L H0

u!, ~19!

and showed that, forR/L51, T5Tc 0, good data collapse o
y[ ln@W H0

2k# againstx[L H0
u can indeed be obtained wit

k.0.4320.50 andu.0.8. We usedL<15 and scanned 0
,x&2.8; keepingk50.45 andu50.8, we found forx.1 a
satisfactory fit given byy520.325.3 exp(21.57x), which
would imply an exponential saturation of the scaled wid
W h0

2k asx→`, with a limiting value exp(20.3)50.83.
In Fig. 4, we display again the data of Ref.@9#, plus ad-

ditional data forL515 and 18, which enabled us to explo
larger values ofx (x&4.0) while still keeping to relatively
low H0. We then reanalyzed our full set of data, with t
results that~i! we managed an excellent fit to the who
interval 0,x,4 by a single expression

FIG. 4. Semilogarithmic scaling plot of rms relative width
W H0

k againstL H0
u . The curve is a fitting spline given by Eq.~20!.
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y522.2H lnS 1.0

x
10.6D J 20.4025, ~20!

~in which y andx involve the same values of the exponen
k, u as earlier!, and ~ii ! this new fit, while still predicting
saturation forx@1, implies that in the approach to two d
mensionsx@1, convergence ofW h0

2k is power law like,
giving a limiting scaled width W h0

2k

50.622.2exp(20.4025)52.06.

VI. MAGNETIZATIONS

In this section we examine the scaling properties of
uniform magnetization on strips of thed52 RFIM. For con-
venience we shall always keepT5Tc 0.

We first outline our method, which involves a generaliz
Legendre transformation. Consider the Hamiltonian

H5H0~$s%!2h(
i

s i ~21!

where s i are Ising spins, andH0 includes all interactions
except that of the spins with the uniform fieldh. One has, for
the corresponding partition functionZ(h),

Z~h!

Z~0!
5(

M
P0~M !ebMh, b5

1

T
, ~22!

whereP0(M ) is the probability of occurrence of the valueM
for the magnetization,in zero uniform field. Assuming a sys-
tem with N@1 spins, with f (h) equivalent to the negative
free energy per site in units ofT, andm[bM /N,

eN( f (h)2 f (0))5NE dm P0~m!eN m h. ~23!

In order for extensivity to be satisfied, one must ha
N P0(m)5expN g(m), where g(m) is intensive and deter
mined by

eN( f (h)2 f (0))5E dm eN[g(m)1 m h] . ~24!

Assuming the usual sharp-peaked distribution around a t
modynamically averaged valuem̄, one sees that

f ~h!2 f ~0!5g~m̄!1m̄ h1OS ln N

N D , ~25!

with (dg/dm)m̄52h. That is,g is the standard Gibbs fre
energy per site. Substituting back in Eq.~23!, one obtains:

P0~M !5expNg~m!, ~26!

where terms ofO(ln N/N) have again been neglected.
Equation~26!, with g(m) given through Eq.~25!, is the

natural starting point to study magnetization distributions
TM methods. Indeed, though one can obtain the thermo
namically averaged exact values of allmomentsof the dis-
tribution via the TM method@15,16#, the distribution itself is
7-5
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not given directly. This contrasts with Monte Carlo metho
which inherently incorporate readily observable fluctuatio
around equilibrium, and have been widely used to stu
magnetization distributions at criticality, both in hypercub
geometries@17# and on planar lattices with various aspe
ratios @18#.

Recall that, on strips of widthL and lengthLx , Lx@L
such as is the case here, the aspect ratio is essentially infi
thereforeP0(M ) will be Gaussian, at least for pure system
@16,18#. Our purpose~as shown below! is to compare pure—
and RFIM— results and explain their mutual differences,
using general theory of RF systems@2,8,19–21# coupled
with finite-size scaling~FSS! @22#.

A. Pure Ising systems

We start by illustrating the properties ofg(m) for pure
Ising spins. One calculatesf (h), f (0), m(h) in Eq. ~25! by
standard numerical methods@23#: the first two by isolating
the largest eigenvalueL0 of the TM and using f
5L21 ln L0 ~which is tantamount to assumingLx→`; more
on this below!, the third by calculating derivatives off rela-
tive to h. The latter is done here by perturbation theo
@15,16,24,25#, both for better numerical accuracy and b
cause an adapted procedure proves convenient when de
with the RF case, where samples over disorder must be
cumulated.

At t[(T2Tc)/Tc50, for the excess free energy FSS@22#
gives D f (h,L)[ f (t50,h,L)2 f (0,0,L)5h111/d F(L h1/yh),
with d515, yh515/8. In Fig. 5 we show scaling plots o
D f (h) h2(111/d) and m h21/d againstL h1/yh. For low fields
(h&L2yh), the slopes of both logarithmic plots are given
the ~finite-size! initial susceptibility exponentg/n57/4, as a
consequence of the scaling relationyh(121/d)5g/n.

For nonzerot but still for low fields, one generally ex
pects D f (h)5a(t,L) hm from which m5a(t,L) m hm21,
g5D f 2mh5a(t,L) (12m) hm, implying g
;a(t,L)21/(m21)mm/(m21). Subcases are~i! t50, L5`:
D f ;h111/d, so g;m11d; ~ii ! t small, L5`, 1@t*m1/b:

FIG. 5. Scaling plots of magnetization and excess free ene
for pure Ising systems at criticality. Strip widthsL54 ~circles!, 8
~crosses!, 12 ~triangles!, and 16~squares!. Normalized magnetiza-
tions (5Tc ] f /]h) are used to avoid a superposition of plots.
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D f 5a(t) h2, a(t)5 1
2 x(t);t2g, so g;tgm2; and ~iii ! t

50, L finite, 1!L&m2n/b: D f 5a(L) h2, a(L)5 1
2 x(L)

;Lg/n, sog;L2g/n m2.
Case~iii ! is depicted in Fig. 6. One sees that2g Lg/n

;m2 as far asm.0.6, which@through Eq.~26!# is consistent
with the Gaussian behavior predicted forP0(M ) in this case.
Close tom51 scaling breaks down, and the deviation fro
saturation magnetization must follow a single-spin-flip p
ture,«[12m;exp(22/Tc). The effects of this ong can be
worked out from a high-field expansion, in whichH0 of Eq.
~21! is taken as a perturbation on the field termh( is i @26#.
The result is

dg

d«
5s01

1

2
ln

1

«
1O~«!, ~27!

wheres05 1
2 (ln 228/Tc)521.41617. . . .

Figure 7 shows that Eq.~27! is in excellent agreemen
with numerics already for (1/2)ln(1/«).2.4(«.1022). This
provides a rigorous check of our analytical and numeri
procedures.

Returning to the connection betweeng and magnetization
distributions, we first note that, although we are usingf
5L21 ln L0 which holds only for strip lengthLx→`, the
numberN5LxL of spins in Eq.~26! implies a finite, though
possibly very long, strip for the equation to be of practic
use. An estimate of the error implied by using infinite-str
free energies instead of their fully-finite system counterpa
can be obtained by referring to Table 2 of Ref.@16#, where it
is shown that for systems with aspect ratioa[Lx /L5100,
the corresponding value of the Binder parameterQ
[^M2&2/^M4& is .2% off its a→` limit of 1/3. As typical
widths used here and, especially in Sec. VI B, are in
rangeL&20, and assuming that errors in the distribution a
in its calculated moments are of the same order, it follo
that using the infinite-strip expression forf implies devia-
tions in P0(M ) smaller than 2% forLx*2000. The advan-
tage of this procedure is thatLx can be seen essentially as

y FIG. 6. Negative Gibbs free energy2g52(D f 2mh) times
Lg/n againstm2 for pure Ising systems at criticality. For a key to th
symbols, see the caption of Fig. 5. The straight line has a uni
slope, and is a guide to the eye. Normalized magnetizations on
horizontal axis only.
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free parameter, i.e., not connected to an actual numbe
iterations along the strip. For our purposes here, we s
always be comparing pure-system results~whereLx is ficti-
tious in the sense just described! with those obtained on RF
strips of the same width at the same temperature, where s
pling over disorder typically necessitates an actualLx.105;
thus equating the values ofLx in both systems is both correc
as far as comparisons are concerned and, given the len
required for adequate sampling over randomness, f
within acceptable error margins for the description of pu
systems.

From Eq.~26!, for case~iii ! where2g Lg/n;g0 m2, g0
.1021 as shown in Fig. 6,

P0~M !5exp@2g0LxL
(h21)m2#, ~28!

where 22h5g/n was used. Therefore, the width of th
Gaussian distribution isW;g0

21/2L (12h)/2/ALx.

B. RFIM

We now include the term( ihis i in H0 of Eq. ~21!, with
the local fieldshi distributed according to Eq.~1!. We first
consider the application of FSS to the RFIM in a zero u
form field. For bulk systems, theory predicts that the scal
behavior of the RFIM depends onH0

2utu2f whereH0 is the
random-field intensity,t5@T2Tc(H0)#/Tc(H0) is a reduced
temperature@2,8,19–21#, and@19# the crossover exponent i
f5g, the pure Ising susceptibility exponent. Ford.2,
Tc(H0) is the field-dependent temperature at which a sh
transition still occurs; ind52 the dominant terms still de
pend on the same combination, where now@21# ‘‘ Tc(H0)’’
denotes a pseudocritical temperature marking, e.g., the l
tion of the rounded specific-heat peak. Ind52, specific heat
@20# and neutron-scattering@21# data are in good agreeme
both with the choice of scaling variable as above, and w

FIG. 7. Derivative of Gibbs free energy relative to the magn
tization deviation« against (1/2)ln(1/«). Points: numerically calcu-
lated derivatives fromL516 data forf andm (L58 already gives
results indistinguishable from those displayed!. Straight line: first
two terms on the right hand side of Eq.~27!.
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the exactly knowng57/4. For the excess free energyD8 f
[ f (t,H0)2 f (t,0) in two dimensions, an additive logarith
mic correction arises@20,27#:

D8 f 5A* t2 ln H01H0
2dn/fC~ t H0

22/f!. ~29!

In Ref. @9#, we showed that the appropriate FSS variable
the description of correlation functions in finite RF system
at t50 is x[L H0

2n/f . While the second term on the righ
hand side of Eq.~29! is taken care of in that way, the loga
rithm needs separate consideration. On the basis
renormalization-group arguments, in whichL21 is seen as an
additional relevant field@28#, one realizes that the steps lea
ing to the appearance of thet2ln H0 term in Eq. ~29! also
apply here. Indeed, since the respective eigenvalue@yT51 in
that case,yL2151 here# divides the dimensionalityd52
@20,27#!, a corresponding scenario obtains att50 andL21

→0, whenL21/n is substituted fort. Therefore, we assume

D8 f ~ t50,L,H0!5Ã L22 ln H01H0
2dn/f C̃~L H0

2n/f!.
~30!

In Fig. 8, whereT5Tc 0 ~thus a small,H0-dependent shift in
‘‘ Tc(H0)’’ @20,21# has been neglected, which should not m
ter much for low RF intensities!, we display results of a
numerical test of Eq.~30!, both with and without the loga-
rithmic term.

We have found fits of a quality similar to that shown
Fig. 8~b!, where Ã51024, for a wide range 1025&Ã
&1022 along which thex2 estimator remains approximatel
constant. At largeH0 Lf/2n, however, the fits deteriorate no
ticeably @not obvious from Fig. 8~b!, because of the large
vertical scale#, no doubt owing to the incipient breakdown o
the small-RF regime@where, e.g., theH0-dependent shift in
‘‘ Tc(H0)’’ is no longer negligible#. Comparison with experi-
mental data, e.g., from Ref.@20# is not straightforward, as
transforming from bulk scaling,@Eq. ~29!# to FSS@Eq. ~30!#
may involve numerical factors not immediately available.

Moving on toward incorporating both RF and unifor
field effects, we again neglect theH0-dependent shift in

- FIG. 8. D f s[(D8 f (L,H0)2Ã L22 ln H0)H0
22dn/f plotted

againstH0 Lf/2n, f57/4, andn51. ~a! Ã50. Bottom to top:L

54, 6, 8, 10, and 12.~b! Ã51024, same notation.
7-7
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‘‘ Tc(H0),’’ and make T5Tc 0. In the presence of severa
relevant fieldsu1 ,u2 . . . with respective scaling power
y1 ,y2 , . . . , thesingular part of the free energy scales as@27#

f ~u1 ,u2 ,••• !5uu1ud/y1FS u2

uu1uy2 /y1
,

u3

uu1uy3 /y1
,••• D .

~31!

Using u15H0 , u25L21, u35h, in the case one has (d
52): y152n/f58/7, y251, y35yh515/8, therefore

f ~H0 ,L,h!5H0
2dn/fF~L H0

2n/f ,h H0
22nyh /f

!. ~32!

Possible lnH0 corrections in the manner of Eq.~30! have
been omitted, since our interest will focus on the calculat
of the Gibbs free energy, which in the case depends
D9 f 5 f (H0 ,L,h)2 f (H0 ,L,h50) @see Eqs.~21!–~25!#; we
are thus assuming that, at least for small enoughh, the loga-
rithmic terms cancel in the subtraction.

Similarly to the pure case but always att50 and L21

→0, we investigate the small-h regime, in which one ex-
pectsD9 f 5a(L,H0) hm. From Eq.~32!, this implies

D9 f 5hm H0
2n(d2myh)/fF1~L H0

2n/f!. ~33!

By assuming, asH0→0, a power-law dependenceF1(x)
;xt, and demanding that, in this limit,~i! the
H0-dependence ofD9 f must vanish and~ii ! the formh2 Lg/n

be reobtained, one obtainsm52, t57/4. Therefore, for
small h&L2yh one generally has

D9 f 5S h

H0
D 2

F1~L H0
2n/f!. ~34!

Now considering a nonvanishing, but still small RF, o
may assume a crossover to a new power-law form forF1(x),
F1(x);xz. In this regime (L H0

2n/f*1),

D9 f 5Lz H0
2nz/f22h2; ~35!

thusa(L,H0)5Lz H0
2nz/f22, yielding ~see Sec. VI A!

g~L,H0 ,m!52@a~L,H0!#21m252L2zH0
222nz/fm2.

~36!

Our data forg(L,H0 ,m), displayed in Fig. 9, are consisten
with z51, that is,g(L,H0 ,m);2L21 H0

6/7m2.
One then has, using Eq.~26!,

P0~M !5exp@2g1LxH0
6/7m2#, ~37!

with g1.0.28 from the slope of the straight line in Fig.
Therefore, the distribution is still Gaussian, with a widthW
;g1

21/2H0
23/7/ALx. A comparison with a corresponding pu

system@see Eq.~28! and the arguments in the paragra
preceding it# gives

W~L,Lx ,H0!

W~L,Lx,0!
;~L H0

8/7!23/8, ~38!
03611
n
n

showing again that the FSS variablex[L H0
2n/f is the rel-

evant one. Forx@1 where RFIM behavior sets in, one se
that distribution widths are smaller for RFIM than in ze
field. This is in correspondence with very recent ground-st
results @29#, where it is found that percolation of, sa
upward-pointing spins is made less likely by increasing
random field.

VII. CONCLUSIONS

We have used TM methods to calculate spin-spin corre
tion functions, Helmholtz free energies, and magnetizati
on long strips of width L53218 sites of the two-
dimensional RFIM, close to the zero-field bulk critical tem
perature.

Through an analysis of the probability distributions
correlation functions for varying spin-spin distancesR, we
have shown that fits to exponential decay of averaged va
againstR ~for R not too large! give rise to effective correla-
tion lengthslarger than in zero field. This is because of th
reinforcement of correlations within domains. At longer d
tances~i.e., across many domain walls,R/L@1), fits of ex-
ponential decay become unreliable, thus compromising d
nitions of effective correlation lengths.

We have worked out explicit connections between fie
and correlation function distributions at high temperatur
yielding approximate analytical expressions for the latt
Such expressions account well for trends found in numer
data, namely, the existence of peaked cusps and the f
tional dependence, onR and field intensityH0, of data below
the peak; above the peak, although agreement with nume
is not good, we have pinpointed that the responsibilty for t
lies in a truncation in our approximate scaling scheme, wh

FIG. 9. Negative Gibbs free energies:~a! raw data and~b!
scaled, against squared uniform magnetization. Linear scales
used on axes, in order to underline the spread of raw data. In~a!,
data for the same (L,H0) are joined by dashed lines. Strip width
L54 ~circles!, 6 ~crosses!, 8 ~triangles!, and 10~squares!. RF in-
tensities:H050.3, 0.4, and 0.5 (L54); for L56, 8, and 10,H0

50.2, 0.3, and 0.4. For fixedL, H0 increases from bottom to top
curves. In~b!, plots of2L H0

26/7 g collapse well onto a straight line
againstm2 @Eq. ~36! with z51] up tom2.0.4. The straight line in
~b! is a guide to the eye, and has a slope 0.275.
7-8
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decouples scaled nearest-neighbor interactions from the
dom field. We have discussed the use of analytical exp
sions, such as the ones found here, for a computation o
corresponding structure factor. Though results as they s
are far from conclusive, we have established a rough guid
attempts at connecting basic microscopic features, suc
fluctuations of accumulated fields, to experimentally obse
able quantities, e.g. scattering functions.

We have reanalyzed the asymptotic behavior of the r
tive widths of correlation function distributions, first pre
sented in Ref.@9#, and now complemented by addition
data. While our earlier analysis seemed to point towards
ponential saturation, the new set of data shows that, for fi
R/L51, the fractional widths of correlation function distr
butions behave consistently with asymptotic power-law sa
ration, i.e., depending onL22.2, see Eq.~20!. The scaling
variables remain as given previously.

Considering a uniform applied fieldh, we have derived a
connection between Helmholtz free energyf (h), uniform
magnetizationm(h), the Gibbs free energyg(m), and the
distribution function for the uniform magnetization in ze
uniform field,P0(m), which is in principle applicable to any
finite system. By working at the bulk zero-field critical tem
peratureTc 0, we have illustrated our approach by showi
that, for strips, one indeed obtains a Gaussian distribu
@16,18# for m not very close to saturation. Nearm51, where
scaling breaks down and a single-spin-flip picture holds
perturbation expansion accounts for the properties ofg(m).
Still at Tc 0, now in nonzero random field, we have foun
from finite-size scaling and crossover arguments, coup
with numerical data, that for strip geometriesP0(m) is still
Gaussian, and its width varies against~non-vanishing, but
small! random-field intensityH0 as H0

23/7. This is again
valid far from saturation~typically, for m2&0.4; see Fig. 9!.
The ratio between the width ofP0(m) and the width of the
corresponding distribution for a strip of same length a
width in zero field varies as (L H0

8/7)23/8.
We expect that at least some of the features discus
. J

n

ys
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here, for distributions of correlation functions and magne
zations on strips, translate also for other geometries. Con
ering, for instance, square systems: does the nontrivial f
of P0(m) at bulk criticality in zero field@16–18# evolve into
a corresponding shape forH0Þ0 which depends on the vari
able (L H0

8/7)23/8 as here? Finally, recalling possible conne
tions with experiment: given that the description of corre
tion decay via effective correlation lengths runs in
difficulties at long distances, perhaps this compromises na
fits of neutron-scattering data in the small-wave vector
gion.

In practical terms, the most direct implication of this
that data for this region is most subject to fluctuation
Therefore, if one considers statistical errors of data, they
expected to be larger near zero wave vector. Use of stan
data-weighting techniques@30# should contribute toward re
ducing the overall effects of such fluctuations. Recall th
what we have given is the sample-averaged scattering fu
tion @S(q)# measured in experiment; though from Eqs.~2!
and ~3! one might conceivably work out the probability dis
tribution of S(q), the experimentally observable quantity
of considerably greater interest. Another suggestion wo
be cutting off the data collection below an optimum wa
vector dependent on the random field; or, since detectors
designed for a particular range of wave vectors, one mi
suggest appropriately limiting the range of field values fo
given range ofq’s.

ACKNOWLEDGMENTS

S.L.A.d.Q. thanks the Department of Theoretical Phys
at Oxford, where this work was initiated, for the hospitalit
and the cooperation agreement between CNPq and the R
Society for funding his visit. The research of S.L.A.d.Q. w
partially supported by the Brazilian agencies CNPq~Grant
No. 30.1692/81.5!, FAPERJ~Grants Nos. E26–171.447/9
and E26–151.869/2000! and FUJB-UFRJ. R.B.S. acknow
edges partial support from EPSRC Oxford Condensed Ma
Theory Rolling Grant GR/K97783.
Rev.

.

@1# Y. Imry and S. Ma, Phys. Rev. Lett.35, 1399~1975!.
@2# S. Fishman and A. Aharony, J. Phys. C12, L729 ~1979!.
@3# H. Yoshizawa, R. A. Cowley, G. Shirana, R. J. Birgeneau, H

Guggenheim, and H. Ikeda, Phys. Rev. Lett.48, 438 ~1982!.
@4# R. J. Birgeneau, H. Yoshizawa, R. A. Cowley, G. Shirane, a

H. Ikeda, Phys. Rev. B28, 1438~1983!.
@5# D. P. Belanger, A. R. King, V. Jaccarino, and J. L. Cardy, Ph

Rev. B28, 2522~1983!.
@6# J. Z. Imbrie, Phys. Rev. Lett.53, 1747~1984!; J. Bricmont and

A. Kupiainen, ibid. 59, 1829 ~1987!; M. Aizenman and J.
Wehr, ibid. 62, 2503~1989!.

@7# For a review, see, e.g., D. P. Belanger, inSpin Glasses and
Random Fields, edited by A. P. Young~World Scientific, Sin-
gapore, 1998!.

@8# A. Aharony and E. Pytte, Phys. Rev. B27, 5872~1983!.
@9# S. L. A. de Queiroz and R. B. Stinchcombe, Phys. Rev. E60,

5191 ~1999!.
.

d

.

@10# T. Olson and A. P. Young, Phys. Rev. B60, 3428~1999!.
@11# C. Chatelain and B. Berche, Nucl. Phys. B572, 626 ~2000!.
@12# M. F. Collins, Magnetic Critical Scattering~Oxford Univer-

sity, Oxford, 1989!.
@13# Z. Slanic, D. P. Belanger, and J. A. Fernandez-Baca, Phys.

Lett. 82, 426 ~1999!; e-print cond-mat/0012343.
@14# U. Glaus, Phys. Rev. B34, 3203~1986!.
@15# T. W. Burkhardt and B. Derrida, Phys. Rev. B32, 7273~1985!.
@16# G. Kameniarz and H. W. J. Blo¨te, J. Phys. A26, 201 ~1993!.
@17# K. Binder, Z. Phys. B: Condens. Matter43, 119 ~1981!; D.

Nicolaides and A. D. Bruce, J. Phys. A21, 233 ~1988!; R.
Hilfer and N. B. Wilding, J. Phys. A28, L281 ~1995!; M. M.
Tsypin and H. W. J. Blo¨te, Phys. Rev. E62, 73 ~2000!.

@18# Y. Tomita, Y. Okabe, and C.-K. Hu, Phys. Rev. E60, 2716
~1999!; Y. Okabe, K. Kaneda, Y. Tomita, M. Kikuchi, and C
K. Hu, Physica A281, 233 ~2000!.

@19# A. Aharony, Phys. Rev. B18, 3318~1978!.
7-9



J.

d

a

ys.

n

-

g
4

S. L. A. de QUEIROZ AND R. B. STINCHCOMBE PHYSICAL REVIEW E64 036117
@20# I. B. Ferreira, A. R. King, V. Jaccarino, J. L. Cardy, and H.
Guggenheim, Phys. Rev. B28, 5192~1983!.

@21# V. Jaccarino, A. R. King, and D. P. Belanger, J. Appl. Phys.57,
3291 ~1985!; D. P. Belanger, S. M. Rezende, A. R. King, an
V. Jaccarino,ibid. 57, 3294 ~1985!; A. R. King, V. Jaccarino,
M. Motokawa, K. Sugiyama, and M. Date,ibid. 57, 3297
~1985!.

@22# M. N. Barber, inPhase Transitions and Critical Phenomen,
edited by C. Domb and J. L. Lebowitz~Academic, New York,
1983!, Vol. 8.
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