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Transfer-matrix methods are used to calculate spin-spin correlation func®nddelmholtz free energies
(f) and magnetizationgn) in the two-dimensional random-field Ising model close to the zero-field bulk critical
temperatureT, o, on long strips of widthL=3-18 sites, for binary field distributions. Analysis of the
probability distributions ofG for varying spin-spin distanceR shows that describing the decay of their
averaged values by effective correlation lengths is a valid procedure only for not veryRa@ennections
between field and correlation function distributions at high temperatures are established, yielding approximate
analytical expressions for the latter, which are used for computation of the corresponding structure factor. It is
shown that, for fixedR/L, the fractional widths of correlation-function distributions saturate asymptotically
with L 22 Considering an added uniform applied fi¢lda connection betweef(h), m(h), the Gibbs free
energyg(m) and the distribution function for the uniform magnetization in a zero uniform fiejdm), is
derived and first illustrated for pure systems, and then applied for nonzero random field. From finite-size
scaling and crossover arguments, coupled with numerical data, it is found that the wiBt{nof varies
against(nonvanishing, but smalrandom-field intensityH angw.
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[. INTRODUCTION under study. We then recall the connection between structure

factors and averaged correlations in random systems, and
The random-field Ising modéRFIM) has posed a num- discuss the extraction of effective correlation lengths from
ber of challenges to researchers since its introduction as &Hr numerical data for correlation-function statistics. Next
apparently purely theoretical puz4lg]. The later realization ~We exploit the connection between field and correlation func-
that it corresponds, give or take a féhopefully irrelevant  tion distributions at high temperatures, in an attempt to de-
details, to the experimentally realizable dilute Ising antifer-five approximate analytical expressions for the latter; such
romagnet in a uniform applied fiel®] brought about new formulas are used in turn, in order to compute the corre-
insights and new questions as well; among the latter, is thgponding structure factor. A short section is dedicated to a
interpretation of experimental data in a suitable theoreticareanalysis of the asymptotic behavior of the widths of corre-

framework. This has proved to be rather an intricate subjecfation function distributions, first presented in RE3], and

even down to basic aspects such as whether the lower criticBPW complemented by additional data. In Sec. VI, an addi-
dimensionality for the problem wak=2 or 3[3-5]. Though  tional uniform applied field is considered: free energies and
by now this particular issue was settled in favoef 2 [6],  Uniform magnetizations are calculated on strips of both pure

several important aspecﬁ'such as the Sca"ng behavior near and RFIM SyStemS. These quantities are Used to Ca|Cu|ate the

the destroyed phase transitionds- 2, which will be of in-  corresponding Gibbs free energy which, in turn, gives the
terest herpstill require further elucidatiofi7]. distribution function for the uniform magnetization in zero

In the present paper we dea| with a two_dimensiona|unif0rm field. Numerical data are then analyzed via finite-
RFIM, where long-range order is destroyed, and a zerosize scaling and crossover arguments. A final section summa-
temperature, zero-field “anomalous” critical point appearsfizes our work.

[8]. The latter will not concern us directly, as we shall be

working at high temperatures, close to the pure-system fer- Il. NUMERICAL METHODS AND d=2 RFIM
roparamagnetic transition. We extend and complement our ) , ) )
early work[9], making use of transfer-matridM) methods We consider strips of a square lattice of ferromagnetic

on long, finite-width strips of a square lattice; we generatdSiNg spins with nearest-neighbor interactid= 1, of width
and analyze statistics of spin-spin correlation functions ang=L<=18 sites with periodic boundary conditions across.
uniform magnetizations. Wherever feasible, we attempt tol "€ random-field valuels; are drawn for each sitefrom the
draw connections between our numerical results and experfinary distribution:

mentally observable quantities. In what follows, we begin by N

briefly reviewing selected aspects of the numerical tech- p(hi)=2z[8(h;j—Ho)+ é(hj+Ho)]. @

nigues used, and how they relate to the physical problem ) )
TM methods are used, on long strips of typical lengith

=10° columns, as described at length in Rf] and refer-
*Electronic address: sldg@if.ufrj.br ences therein, to generate representative samples of the
TElectronic address: stinch@thphys.ox.ac.uk guenched random fields. Along the strip, we calculate corre-
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lation functions(as explained in the next paragrapas well
as free energies and magnetizatiddstails in Sec. V). 0.03

Here we calculate the disconnected spin-spin correlation
function G(R)=(ojoR), between spins on the same row
(say, row 1, andR columns apart. Related quantities, such as
correlation lengths, are defined with connected correlations,
(oooRr)—(0o)?, in mind; however, for the quasi-one-
dimensional Ising systems under consideratieither pure
or random one is always in the paramagnetic phase, so the 001
distinction between connected and disconnected correlations
is unimportant. In Ref[9] we explained why the ranges of
spin-spin distance, temperature, and random-field intensity
of most interest for investigation by TM methods are, respec- 0
tively, RIL=1, O<T=T. (=2.20 ... [we takekg=1],
Hy=0.5. Here we restrict ourselves to high temperatires
=2.0 and rather low fie|dS'|0S 0.1-0.15. We use a linear FIG. 1. Normalized histogran?(G) of the occurrence ofs.
binning for the histograms of occurrence @{R); usually  Strip lengthL,=10° columns, binwidth X 103, Vertical bars are
the whole[ —1,1] interval of variation of G(R) is divided located aG, (full line) and(G) (dashed respectively. The shaded
into 10° bins. region on the horizontal axis goes frof@)—W to (G)+W.

Since we shall be dealing with probability distributions, a
word is in order about multifractality. Though multifractal ~ The simplest assumption foP(Gg) that incorporates
behavior has been fourat the critical point of random-bond both disorder and exponential decay given by a single length
Potts system$10,11], the available evidence strongly sug- ¢ for all distances is a Gaussian distribution
gests that, off bulk criticality, correlation functions behave
normally[10]. Thus in the present case we expect that analy- 1 5 o
ses of different moments of the probability distribution@®f P(Gr)= \/——e_y R, y=Gg-e R (4
will yield essentially the same results. 27 A(R)

T=2.0 H,=0.1
L=5 R=15

0.02

P(G)

where distance-dependent widths(R) allow for, e.g.
[ll. CORRELATION DECAY (disorder-inducey larger uncertainties for larger spin-spin
separations. However, using Eg,) in Egs.(2) and(3), one
btains a width-independent Lorentzian form for the average
tructure factor:

The properties of correlation functions are usually incor-
porated into associated correlation lengths, whose basic de
nition is as(minug the inverse slope of semilogarithmic
plots of correlation functions against distance. In this view, 1
one assumes both that exponential decay can be well defined [S(q)]= ) (5)
at essentially all distances, and that a single length is enough 2, i
to characterize such behavior. In cases such as the present, q &
guenched randomness implies that configurational averages
must be taken, and one must be careful in deciding whalhis coincides with the standard mean-field result for the
quantities are to be thus promediated. Recall that, e.g., iflisordered phase, and is deemed unsatisfactory upon com-
neutron scattering experiments, the intensity of the magnetiparison with experimental dafa,13].
critical scattering is proportional to the averagever the ~ We now exhibit our numerical results, and compare their
crysta) of the scattering functio®(q ), which is the Fourier Implications to those of Eqs4) and (5). For high tempera-
transform of the correlation function for wave-vector transfertUres and low random-field intensities, as specified above, we

- . _ . recall (also see Refl9]) the following main features found
glrglcfljﬁs \é\giinfg:G(R)' and wave vectog in the Tow ¢, "o hronanility distributionP(G): (i) a clearly identifi-

able, cusplike peak, at sont,, belowthe zero-field value
Gy=G(Hy=0); (ii) a short tail below the peak and a long
:f dR éR(Gp), (2)  one above it, such thdiii) all moments of orde&0 of the
distribution areabove G. In Fig. 1, where the first moment
_ _ (G) is shown, one hasG,,=0.278, G,=0.2853, (G)
where[ - - - ] stands for configurational average, and =0.321 the rms width7\/z<(G—(G))2>1/2= 0.071.
Therefore, the features depicted in Fig. 1, especially the
_ asymmetric cusp, are at variance with the form of E4.
(Gr) f dGr P(GRIGr, ® We now investigate what effects are carried over to the as-
sociated correlation lengths. We do so by mimicking the pro-
whereP(Gg) is the probability distribution foGg. The last  cedure outlined in Eq92) and (3) above: first we average
equality in Eq(2) depends only on the assumption thatover randomness for a given spin-spin separation, and then
P(Gg) is position independent along the crystal. study the variation of the averaged quantities over distance.

[S(a)]=

de dIRGR
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L LA B e A The effect of the above on fits of neutron-scattering data
to line shapes is that, since the latter rely on the idea that
correlation lengths are always reliable quantities, they may
be off the actual picture in the small-wavevector region. We
now attempt to derive approximate analytical expressions for
P(GR); our ultimate goal is to predict a form fdrS(q)]
from Egs.(2) and(3).

Ly

In [G(R)]

IV. DISTRIBUTION OF G FROM FIELD DISTRIBUTION
(AT HIGH T)

T=2.0 H,=0.1 In this section we use simple scaling ideas to establish a
PR EF R B quantitative connection between the underlying distribution
10 20 of accumulated fields and that of the correlation functions

R themselves. We begin by considering a one-dimensional sys-

FIG. 2. Correlation decay along strips of widths=5 and 9. tem With_SiteS Qenoted byzo’l' . - -, uniform ”e"?‘reSt'
Full lines: Ho=0. Points:(G) for Hy=0.1. Dashed lines: un- neighbor interaction& and site-dependent random fiellds

weighted least-squares fits bf,=0.1 data. Vertical bars give the (POt in units ofT). For any given specific realisation of the
rms widthsW of corresponding distributions. fields an exact de;mmapon sc.heme with length scalmg factor
b=2 can be applied, eliminating all odd-numbered sites. The
renormalized fields at, and coupling between, e.g., spins 0
and 2, are given by

iR
[9)]
TT [T T T T [T T T T [T T T T[T T T T [ TTIT
k b4 i
[
I
[9)]

T Tt

<
(O]
(]

The results are in Fig. 2, where our numerical data(fay

are plotted against varying. H,=0 data are also shown for

comparison. h'—h.=h.—h
One sees from the respective slopes that, taking into ac- o 2o T2

count data foR=L, the correlation length foid ,# 0 would

seem to be systematicallgrger than in zero field. This re- hy+h)=ho+h,+ Eln

flects the domain structure into which the system breaks 2

down: at short distances the conditional probability for a spin

to belong to the same domain as the one at the origin is

larger than forH,=0. 4K’ =In
For longer distances, correlation functions start to show

severe disorder-induced fluctuations, related to the crossin% ) ) ) ) )

of domain walls. Contrary to the zero-field case, wherelterating this Brocedure times, one obtains a single renor-

temperature-induced domain walls are present but the remalized bondK connecting sites 0 anld (R=2"), at which

spective sign changes in correlation functions average out tghe respective rescaled fields aﬁ@, ER_ The correlation

give an exponential fall off, here the domain wall configura-function G(R)=(ogoR) is therefore

tions are essentially determined by tftgienchedl accumu-

cosh2ZK+hy)

cosh2K—hy)|’ ©)

cosh2K+h,)coshZ2K—h;,)
costt2h,

lated random-field fluctuations. At larg& such fluctuations e?X coshfy+hg) — costifiy—Fig)
play a very sensitive role even for very low random field G(R)=— — —. (7)
intensities. One anticipates problems with defining correla- e cosfthg+hg) +coshihy—hg)

tion lengths from the corresponding data. The vertical bars in

Fig. 2 show that, for a fixed strip width, the widthW of the ~ For low fields Ho<1, one uses cosh{—hg)/coshiip+Hg)
distribution indeed grows apparently unbounded for increas=exp(—2hshg) to obtain
ing R; though this is related to the crossing of domain walls
just mentioned, it is also, and predominantly, an intrinsic G(R)=tani K +hghg). (8)
feature of the quasi-one-dimensional systems used here.
Thus mfemng a two-dimensional behavior from such trendsThen, also provided that,<K, the distribution ofG(R) is
may be risky. However, we now argue thatds 2 one does
actually run into problems for largR, exactly as inferred
above; only, the underlying reasoning is subtler.

In fact (see Ref[9] and Sec. V beloyy a different analy-
sis of correlation functions,Nat fixeR/L, strongly suggests p(x):f dh P(hy) f dhr P(Fr) 8(X—Tghr).  (9)
that therelative widths W=W/(G) grow asR,L— in d
=2, approaching a finite limiting valueC Hj, C=2, : . : ,
x=0.5. This means that, when one considers the dispersio’%‘t low H,, the scaling 'eqqatlons(G) give No~ho .
of In(G), the signal-to-noise ratio becomes of order 1 f0r+h1tanh XK. Repeated applications of this transformation

1 . -~ R . —_ .

largeR,L, and it is this latter fact that, id=2, must com- ~ 9iVe ho~Zi_;h; if R<¢, whereé~In(tanhK) ! is the cor-
promise attempts to extract correlation lengths in such rangeelation length at lowH,. Thenhg (and similarlyhg) is the

given by that ofX=h,hg, since(to lowest order inHy)
K’=3Incosh X is field independent. One has
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sum of A independent variablesM(=R), so the individual

distributions ofh,, hg become(at largeR and &) Gaussians
of width A=H M

P(hor)cexd — (hor/A)?]. (10

For R= ¢, the same form applies, but because the field accu-

mulation under scaling is cut off by the decreasing tdnh
the relation for A involves N~§¢. So, in general, N
~min (R,§).

Making hy=s cos6, hg=ssiné,

2

S
—sin 20) , (11

o 2w
P(X)@f ds sf deeszmzé(x—
0 0 2

with the final result

2|X]

P(X)= N (12

2 Y 1+l
Pe n y

wherea is an overall normalization constant. Strictly speak-

ing, Eq.(12) is anasymptotiaeduction of Eq(11), valid for

PHYSICAL REVIEW B4 036117
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FIG. 3. Semilogarithmic plots of distribution functions below
G,,, the value at whictP(G) peaks(see text L=5 andT=2.0.
The straight line is a guide to the eye.

|G—Gn|/RHZ. This is because the mutual reinforcement,
between ferromagnetic spin-spin interactions and accumu-
lated field fluctuationgresponsible for the long forward tail

the regimesy<1 (the relevant one for our purposes, asl9)) i left out by the approximation above E§), namely,

shown below andy>1.

Transforming back td?(G), one sees that the valu®,,
for which P(G) is maximum must correspond t§=0,
which maximizesP(X). Thus, from Eq.(8),

2
y=P|tanhfle—tanhflG|. (13
For G close toG,,, linearization gives
1
ex —?|Gm—G| 52 }
P(G)~ nil+ =——=| (14
(©) 2A7[1-G2] |G~ Gl 19

with A%=21A2(1-G2).
The main feature exhibited by this form is a locally sym-
metric cusp, with infinite slope on either side, @& G,,.

This is expected to carry over to more general contexts, pro-
vided thatHy<1. Indeed we have checked that a similar

description(applying approximate Migdal-Kadanoff scaling
calculation$, with the prediction of a cusp, also applies on
strips and in two dimensiorisee Eqgs(15) and (16) below,
and related discussi¢nA quantitative test of Eq(14) is
shown in Fig. 3, where only data f@<G,, are displayed
(we shall deal withG>G,, immediately afterward The
conditions are such thd&=<¢, Gﬁ1<1 (see Fig. 2, so the
above low-field theory gived ~H,R. One sees that expo-
nential decay again$G — G,,|/RH3 is indeed the dominant
behavior, provided thaH;<0.15; already forHy;=0.25,

small departures show, which become more prominent for

Ho=0.5.
As regards cusp asymmetry, not predicted by @d), we
have found that although data f&>G,, still fall exponen-

tially for small Hg, they do not collapse when plotted against

thatK’ is Hy independent.

Before calculatingd S(q)] from Eg. (14), we recall that
Egs.(2) and(3) are normally required for bulk systems, thus
one must work out an approximate scheme to go from the
d=1 regime of Eqs(6)—(14) to d=2. We have done so via
a Midgal-Kadanoff rescaling transformationTat- T, o. As a
consequence of the similarity of the corresponding recursion
relations, to those for one dimension, one ends up, after
scalings such that™=R, with a result very similar to Eq.

(8),

G(R)=tanh K +hohg), (15)
where again one assumes low fieltls, hg. For largeR
these have Gaussian distributions of width determined by
the eigenvaluen of the low-field scaling transformation of
Ho. For T near T; g, Ag<R*H, where u=InNInb (b
=2). Further,

(16)

Since Egs.(9)—(12) still apply, providedA is replaced by
AR, one obtains the dominant contribution to the scattering
function as:

[S<q>]o<Ref drReéMe Ri1+CAR), (17
whereC is a constant of order unity. This can be transformed
into

1/§ —(2u+1)
[S(a)] 57— +CH3(2p)! Re(——iq) :
v £

3
(18
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oFx=0.45

1.0
y= —2.2[ In 74—0.6)] —0.4025, (20)

(in which y andx involve the same values of the exponents
K, U as earliey, and (ii) this new fit, while still predicting

" 2 saturation forx>1, implies that in the approach to two di-

E i 10 | mensionsx>1, convergence oW hy “ is power law like,

& 12 giving a limiting scaled width W hy“

4 © 5 =0.6 22exp(~0.4025)=2.06.
v18 | VI. MAGNETIZATIONS
1 1 1 1 | 1 1 1 1 I 1 1 1 1 | 1 1 1 1
0 1 2 3 4 In this section we examine the scaling properties of the

L H" uniform magnetization on strips of tlie=2 RFIM. For con-

venience we shall always ked@p=T, o.
FIG. 4. Semilogarithmic scaling plot of rms relative widths  We first outline our method, which involves a generalized
W H§ againstL Hy . The curve is a fitting spline given by E(O). Legendre transformation. Consider the Hamiltonian

If one assumes the form =Hy\R, given for R<¢ in one _ _ _
dimension[see above and below E¢LO0)], and also by the H=Ho(io}) hZ 7 D
Migdal-Kadanoff scheme id=2, thenu=1/2, and Eq(18)

predicts the line shape to be Lorentzian plus Lorentzianwhere o; are Ising spins, and, includes all interactions
squared, the mean-field form found when the disconnectefixcept that of the spins with the uniform figddOne has, for
contribution is taken into accouf#,7,12—14. On the other the corresponding partition functiaf(h),

hand, if ones goes by the saturation behavior predicted in

Ref. [9] and in Sec. V be.low, and by the scaling apprpaches @:2 Po(M)efMh = E (22)

if R=¢, then the result ig=0, corresponding to a single Z(0) T

Lorentzian in Eq(18).

Though either of these final predictions is certainly openwherePo(M) is the probability of occurrence of the valie
to challenge, in view of the number and severity of approxi-for the magnetizatiorin zero uniform fieldAssuming a sys-
mations involved in the course of their derivation, it is ex- tem with N>1 spins, withf(h) equivalent to the negative
pected that the procedure described above will serve as fge€ energy per site in units af, andm=BM/N,
rough guide to attempts at connecting basic microscopic fea-
tures(such_e_ls fluctuations o_f accumglated fieltls observ- eN(f(h)—1(0) — Nf dm Py(myeN mh, (23)
able quantities, e.g., scattering functions.

In order for extensivity to be satisfied, one must have
N Pg(m)=expN g(m), whereg(m) is intensive and deter-

In Ref. [9] we studied the variation of the rms relative Mined by
width W of the probability distribution of correlation func-

V. WIDTHS OF G DISTRIBUTION

tions, against the field intensity and strip width, for fixed eN(f(h)—f(O)):J dm dVlg(m)+ mh (24)

R/L, high temperatures and sm&él}. We proposed the scal-

ing form Assuming the usual sharp-peiked distribution around a ther-
W=HE f(L HY), (199  modynamically averaged value, one sees that

and showed that, fdR/L=1, T=T, o, good data collapse of f(h)—f(0)=g(m)+mh+0 In_N ' (25)

y=In[W H,“] againstx=L Hg can indeed be obtained with N

k=0.43-0.50 andu=0.8. We used_<15 and scanned 0
<x=<2.8; keepingk=0.45 andu= 0.8, we found fox>1 a
satisfactory fit given by =—0.3—5.3 exp1.5%), which
would imply an e>_<pone_nti_a}l saturation of the scaled width Po(M)=expNg(m), (26)

W hy “ asx—oe, with a limiting value exp¢0.3)=0.83.

In Fig. 4, we display again the data of RE3], plus ad- where terms ofd(In N/N) have again been neglected.
ditional data forL=15 and 18, which enabled us to explore  Equation(26), with g(m) given through Eq(25), is the
larger values ok (x=4.0) while still keeping to relatively natural starting point to study magnetization distributions by
low Ho. We then reanalyzed our full set of data, with the TM methods. Indeed, though one can obtain the thermody-
results that(i) we managed an excellent fit to the whole namically averaged exact values of albmentsof the dis-
interval 0<x<4 by a single expression tribution via the TM method15,16), the distribution itself is

with (dg/dm),,= —h. That is,g is the standard Gibbs free
energy per site. Substituting back in E&3), one obtains:

036117-5
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1 :L|||||| I |\||”| |||||T|] |||||'|'|T| ||||||T|] |||||'|'|T| |||
Q - mh- /¢ 8
I,G 01 ;_ h—(1+1/6l;
= :
g’ i :
l &
< 0.01 ¢ =
S o : :
L1l 1 I\IIIH‘ | \I\Hl\l 11 III|L|.|] IIIILI.I.IJ IIIIILI.I] IIIILI.I.IJ 11
0.1 1 10 107%107%107%0.1 1
Lh'/" P

FIG. 5. Scaling plots of magnetization and excess free energy F|G. 6. Negative Gibbs free energyg= —(Af—mh) times
for pure Ising systems at criticality. Strip widttis=4 (circles, 8 L ¥» againsim? for pure Ising systems at criticality. For a key to the
(crosse 12 (triangles, and 16(squares Normalized magnetiza-  symbols, see the caption of Fig. 5. The straight line has a unitary
tions (=T 9f/dh) are used to avoid a superposition of plots. slope, and is a guide to the eye. Normalized magnetizations on the
horizontal axis only.
not given directly. This contrasts with Monte Carlo methods,
which inherently incorporate readily observable fluctuationsAf=a(t) h?, a(t)=3x(t)~t~?, so g~t"m?; and (iii) t
around equilibrium, and have been widely used to study=0, L finite, 1<L=m "B Af=a(L)h? a(L)=3x(L)
magnetization distributions at criticality, both in hypercubic ~L"”, sog~L~ """ m?.
geometried17] and on planar lattices with various aspect Case(iii) is depicted in Fig. 6. One sees thatg L””
ratios[18]. ~n? as far agn=0.6, which[through Eq.(26)] is consistent
Recall that, on strips of widtlh. and lengthL,, L,>L with the Gaussian behavior predicted f4(M) in this case.
such as is the case here, the aspect ratio is essentially infinit€Jose tom=1 scaling breaks down, and the deviation from
thereforeP,(M) will be Gaussian, at least for pure systemssaturation magnetization must follow a single-spin-flip pic-
[16,18. Our purposdas shown beloyis to compare pure— ture,e=1—m~exp(—2/T,). The effects of this o can be
and RFIM— results and explain their mutual differences, byworked out from a high-field expansion, in whiéfy, of Eq.
using general theory of RF systemi8,8,19-21 coupled (21) is taken as a perturbation on the field tehi;o; [26].
with finite-size scaling FSS [22]. The result is

dg 11
A. Pure Ising systems &zso"‘ E'ng"‘ O(e), (27)

We start by illustrating the properties g{m) for pure
Ising spins. One calculatégh), f(0), m(h) in Eq. (25 by  wheres,=3(In2—8/T.)=—1.41617.. ..
standard numerical methodl23]: the first two by isolating Figure 7 shows that Eq27) is in excellent agreement
the largest eigenvalueA\, of the TM and using f  with numerics already for (1/2)In(&)=2.4(e=10"2). This
=L"tIn Ay (which is tantamount to assumihg—o; more  provides a rigorous check of our analytical and numerical
on this below, the third by calculating derivatives 6frela-  procedures.
tive to h. The latter is done here by perturbation theory Returning to the connection betwegrand magnetization
[15,16,24,2% both for better numerical accuracy and be-distributions, we first note that, although we are using
cause an adapted procedure proves convenient when dealirg.~*In A, which holds only for strip length_,—o, the
with the RF case, where samples over disorder must be agrumberN=L,L of spins in Eq.(26) implies a finite, though
cumulated. possibly very long, strip for the equation to be of practical

Att=(T—-T.)/T.=0, for the excess free energy FE2]|  use. An estimate of the error implied by using infinite-strip
gives Af(h,L)=f(t=0h,L)—f(0,0L)=h*"Y F(L h™n),  free energies instead of their fully-finite system counterparts
with =15, y,=15/8. In Fig. 5 we show scaling plots of can be obtained by referring to Table 2 of Réf6], where it
Af(h) h™ (%1% andm h™ 1 againstL h'¥. For low fields is shown that for systems with aspect ratie=L, /L = 100,
(h=L"¥n), the slopes of both logarithmic plots are given by the corresponding value of the Binder paramet®r
the (finite-size initial susceptibility exponeny/v=7/4,asa =(M?)?/(M*) is =2% off its a— o limit of 1/3. As typical

consequence of the scaling relatigf(1—1/8) = y/v. widths used here and, especially in Sec. VIB, are in the
For nonzerot but still for low fields, one generally ex- rangelL =20, and assuming that errors in the distribution and

pects Af(h)=a(t,L) h* from which m=a(t,L) uh*" 1, in its calculated moments are of the same order, it follows

g=Af-mh=a(t,L) (1— ) h*, implying g that using the infinite-strip expression férimplies devia-

~a(t,L) " Y- Umpl(e=1)  gubcases ardi) t=0, L=%=:  tions in Po(M) smaller than 2% fok,=2000. The advan-
Af~h"Y sog~mt*?% (i) t small, L=, 1>t=mY8:  tage of this procedure is that, can be seen essentially as a
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FIG. 7. Derivative of Gibbs free energy relative to the magne- FIG. 8. A f=(A'f(L,Ho)—AL 2InHgH,*** plotted

tization deviatiore against (1/2)In(¥). Points: numerically calcu-
lated derivatives fronk. = 16 data forf andm (L=28 already gives
results indistinguishable from those displayeftraight line: first
two terms on the right hand side of EQ7).

againstHy L#?, ¢=7/4, andv=1. (a) A=0. Bottom to top:L
=4, 6, 8, 10, and 12b) A=10"*, same notation.

the exactly knowny=7/4. For the excess free energy f
=f(t,Hp)—f(t,0) in two dimensions, an additive logarith-
free parameter, i.e., not connected to an actual number @hic correction arisef20,27:
iterations along the strip. For our purposes here, we shall
always be comparing pure-system resherel, is ficti-
tious in the sense just describeslith those obtained on RF
strips of the same width at the same temperature, where sa b X : sl
pling over disorder typically necessitates an actuak 10%: the des_crlpuon ogy?grrelat!on functions in finite RF sys_tems
thus equating the values bf, in both systems is both correct at t=0 iSx=L Hy"®. While the second term on the right
as far as comparisons are concerned and, given the lengti@nd side of Eq(29) is taken care of in that way, the loga-
required for adequate sampling over randomness, fulljithm needs separate consideration. 01”_ the basis of
within acceptable error margins for the description of pure’€@normalization-group arguments, in which™ is seen as an
systems. additional relevant fiel28], one realizes that the steps lead-
From Eq.(26), for case(iii) where —g L""~gom?, g, Ind to the appearance of théinH, term in Eqg. (29 al§o
=101 as shown in Fig. 6, apply here. Indeed, since the respective eigenvajge 1 in
that case,y, -1=1 herd divides the dimensionalityd=2
[20,27), a corresponding scenario obtainstat0 andL ~*
—0, whenL ~ " is substituted fot. Therefore, we assume

A'f=A*t2InHy+H2 9w (t H, 2. (29

1 Ref.[9], we showed that the appropriate FSS variable for

Po(M)=exg —goL, L7 Pm?], (28)
A'f(t=0L,Ho)=AL 2InHy+HZ*W (L HZ"?).

where 2- »=+vy/v was used. Therefore, the width of the (30)

Gaussian distribution iV~gy YL~/ L.
In Fig. 8, whereT =T, , (thus a smallH,-dependent shift in
“T.(Ho)" [20,21] has been neglected, which should not mat-
ter much for low RF intensitigs we display results of a
numerical test of Eq(30), both with and without the loga-
rithmic term.

B. RFIM

We now include the ternX;h;o; in H, of Eq. (21), with
the local fieldsh; distributed according to Eql). We first

consider the application of FSS to the RFIM in a zero uni-

We have found fits of a quality similar to that shown in

form field. For bulk systems, theory predicts that the scalingrig. 8b), where A=10"%, for a wide range 10°<A

behavior of the RFIM depends d#3|t|~* whereH, is the
random-field intensityt=[T—T.(Hq) 1/ T(H,) is a reduced
temperaturg2,8,19—21, and[19] the crossover exponent is
¢=1, the pure Ising susceptibility exponent. Fde>2,

=10 2 along which they? estimator remains approximately
constant. At largeH, L#?”, however, the fits deteriorate no-
ticeably [not obvious from Fig. &), because of the large
vertical scalé no doubt owing to the incipient breakdown of

T.(Hp) is the field-dependent temperature at which a sharphe small-RF regim¢where, e.g., théd,-dependent shift in
transition still occurs; id=2 the dominant terms still de- “T.(Hy)" is no longer negligiblg. Comparison with experi-

pend on the same combination, where n@4] “ T.(H,)”

mental data, e.g., from Ref20] is not straightforward, as

denotes a pseudocritical temperature marking, e.g., the loc&ansforming from bulk scalindEqg. (29)] to FSS[Eq. (30)]

tion of the rounded specific-heat peak.de 2, specific heat
[20] and neutron-scatterin@1] data are in good agreement

may involve numerical factors not immediately available.
Moving on toward incorporating both RF and uniform

both with the choice of scaling variable as above, and witffield effects, we again neglect thdy-dependent shift in
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“T:(Hp),” and makeT=T,. o. In the presence of several
relevant fieldsuq,u,... with respective scaling powers
Y1,Y2, .. ., thesingular part of the free energy scaleq 28|

u us

co)=|uy |9y
Flug tig,-)=]ug|eF [ug[Y2/va ' |u,|Ysve’

(31

Using u;=Hg, u,=L"1 uz=h, in the case one hasd(
=2):y1=2vlI$=8/7,y,=1, y3=y,= 15/8, therefore
f(Ho,L,h)=H3"F(LH3"¢ h H Z"'%). (32

Possible IH, corrections in the manner of E¢G30) have
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been omitted, since our interest will focus on the calculation _ _ _
of the Gibbs free energy, which in the case depends on FIG. 9. Negative Gibbs free energie@) raw data and(b)

A"f=f(Hgy,L,h)—f(Hy,L,h=0) [see Egs(21)—(25)]; we
are thus assuming that, at least for small endugihe loga-
rithmic terms cancel in the subtraction.

Similarly to the pure case but always &0 andL !
—0, we investigate the smdil-regime, in which one ex-
pectsA”f=a(L,Hg) h*. From Eq.(32), this implies

A"f=hr HZETEIOE (L 29, (33
By assuming, aH,—0, a power-law dependende;(x)
~x', and demanding that, in this limit, (i) the
Ho-dependence ak”f must vanish andii) the formh? L””
be reobtained, one obtaing=2, t=7/4. Therefore, for
smallh<L ¥h one generally has

2

A"f= Fi(LH3Y?).

o (34

Now considering a nonvanishing, but still small RF, one

may assume a crossover to a new power-law forndix),
F1(X)~xZ In this regime [ H3"¢=1),

A"f=L2 Hgvzl¢72h2; (35)

thusa(L,Ho)=L?H3"??~2, yielding (see Sec. VI A

g(L,Hg,m)=—[a(L,Hg)] tm?=—L 2H3 2"Z¢m?,
(36)

Our data forg(L,Hq,m), displayed in Fig. 9, are consistent
with z=1, that is,g(L,Ho,m)~—L " *H§" m?.
One then has, using E(Q6),
Po(M)=exf — gL Hgm?], (37)
with g;=0.28 from the slope of the straight line in Fig. 9.
Therefore, the distribution is still Gaussian, with a width

~ g7 Y2H 3 L,

scaled, against squared uniform magnetization. Linear scales are
used on axes, in order to underline the spread of raw dat@),In
data for the samel(H,) are joined by dashed lines. Strip widths:
L=4 (circles, 6 (crossep 8 (triangles, and 10(squares RF in-
tensities:H,=0.3, 0.4, and 0.5(=4); for L=6, 8, and 10,H,
=0.2, 0.3, and 0.4. For fixel, Hy increases from bottom to top
curves. In(b), plots of — L ngﬂg collapse well onto a straight line
againstm? [Eq. (36) with z=1] up tom?=0.4. The straight line in
(b) is a guide to the eye, and has a slope 0.275.

showing again that the FSS variable=L HZ"'¢ is the rel-
evant one. Fok>1 where RFIM behavior sets in, one sees
that distribution widths are smaller for RFIM than in zero
field. This is in correspondence with very recent ground-state
results [29], where it is found that percolation of, say,
upward-pointing spins is made less likely by increasing the
random field.

VII. CONCLUSIONS

We have used TM methods to calculate spin-spin correla-
tion functions, Helmholtz free energies, and magnetizations
on long strips of width L=3-18 sites of the two-
dimensional RFIM, close to the zero-field bulk critical tem-
perature.

Through an analysis of the probability distributions of
correlation functions for varying spin-spin distand@swe
have shown that fits to exponential decay of averaged values
againstR (for R not too large give rise to effective correla-
tion lengthslarger than in zero field. This is because of the
reinforcement of correlations within domains. At longer dis-
tances(i.e., across many domain wallB/L>1), fits of ex-
ponential decay become unreliable, thus compromising defi-
nitions of effective correlation lengths.

We have worked out explicit connections between field
and correlation function distributions at high temperatures,
yielding approximate analytical expressions for the latter.

A comparison with a corresponding pure sych expressions account well for trends found in numerical

system[see Eq.(28) and the arguments in the paragraphdata, namely, the existence of peaked cusps and the func-

preceding it gives

WL, Ly, Ho)

TR 8/7\ —3/8
W(L,LX,O) (LHO ) )

(39)

tional dependence, dRand field intensityH,, of data below

the peak; above the peak, although agreement with numerics
is not good, we have pinpointed that the responsibilty for this
lies in a truncation in our approximate scaling scheme, which
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decouples scaled nearest-neighbor interactions from the rahere, for distributions of correlation functions and magneti-
dom field. We have discussed the use of analytical expreszations on strips, translate also for other geometries. Consid-
sions, such as the ones found here, for a computation of thering, for instance, square systems: does the nontrivial form
corresponding structure factor. Though results as they star@f Po(m) at bulk criticality in zero field 161§ evolve into
are far from conclusive, we have established a rough guide t8 corresponding shape fblp# 0 which depends on the vari-
attempts at connecting basic microscopic features, such @ble L H5™)~*%as here? Finally, recalling possible connec-
fluctuations of accumulated fields, to experimentally observiions with experiment: given that the description of correla-
able quantities, e.g. scattering functions. tion decay via effective correlation lengths runs into
We have reanalyzed the asymptotic behavior of the reladifficulties at long distances, perhaps this compromises naive
tive widths of correlation function distributions, first pre- fits of neutron-scattering data in the small-wave vector re-
sented in Ref[9], and now complemented by additional gion.
data. While our earlier analysis seemed to point towards ex- In practical terms, the most direct implication of this is
ponential saturation, the new set of data shows that, for fixethat data for this region is most subject to fluctuations.
R/L=1, the fractional widths of correlation function distri- Therefore, if one considers statistical errors of data, they are
butions behave consistently with asymptotic power-law satuexpected to be larger near zero wave vector. Use of standard
ration, i.e., depending oh 2?2 see EQ.(20). The scaling data-weighting techniqudS0] should contribute toward re-
variables remain as given previously. ducing the overall effects of such fluctuations. Recall that
Considering a uniform applied fiell we have derived a Wwhat we have given is the sample-averaged scattering func-
connection between Helmholtz free enerffh), uniform  tion [S(q)] measured in experiment; though from E¢3)
magnetizationm(h), the Gibbs free energg(m), and the and(3) one might conceivably work out the probability dis-
distribution function for the uniform magnetization in zero tribution of S(q), the experimentally observable quantity is
uniform field, Po(m), which is in principle applicable to any ©Of considerably greater interest. Another suggestion would
finite system. By working at the bulk zero-field critical tem- be cutting off the data collection below an optimum wave
peratureT, o, we have illustrated our approach by showing vector dependent on the random field; or, since detectors are
that, for strips, one indeed obtains a Gaussian distributiodesigned for a particular range of wave vectors, one might
[16,18 for m not very close to saturation. Near=1, where ~ suggest appropriately limiting the range of field values for a
scaling breaks down and a single-spin-flip picture holds, &iven range ofy’s.
perturbation expansion accounts for the propertieg(of).
Still at T, o, now in nonzero random field, we have found

from finite-size scaling and crossover arguments, coupled g | A d.Q. thanks the Department of Theoretical Physics
with numerical data, that for strip geometriBg(m) is still 4t Oxford, where this work was initiated, for the hospitality,
Gaussian, and its width varies agairisbn-vanishing, but  and the cooperation agreement between CNPq and the Royal
smal) random-field intensityH, as Hy ¥, This is again  Society for funding his visit. The research of S.L.A.d.Q. was
valid far from saturatioritypically, for m*<0.4; see Fig. B partially supported by the Brazilian agencies CN@ant
The ratio between the width d?(m) and the width of the No. 30.1692/81.5 FAPERJ(Grants Nos. E26—171.447/97
corresponding distribution for a strip of same length andand E26-151.869/200@nd FUJB-UFRJ. R.B.S. acknowl-
width in zero field varies asL(Hg/7 38 edges partial support from EPSRC Oxford Condensed Matter
We expect that at least some of the features discussetheory Rolling Grant GR/K97783.
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